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Iraklion, Greece 

Received 21 December 1989, in final form 5 March 1990 

Abstract. Quantum spin-1 chains with strong planar anisotropy are studied using both 
semiclassical and strong-coupling methods. In addition to providing accurate analytical 
results for the dispersion and intensity of an exciton or antiexciton mode, we find that an 
exciton-antiexciton bound state is formed that could be observed through the two-point 
longitudinal dynamic correlation function which is calculated explicitly. These results are 
relevant for the analysis of neutron scattering experiments on CsFeC1, and CsFeBr,. 

1. Introduction 

Quantum spin chains have long been the subject of theoretical study [l], but exper- 
imental investigations of quasi-one-dimensional magnetic systems are relatively recent 
[2]. With the increased popularity of this subject came an increased demand for reliable 
theoretical predictions. Yet the calculation of dynamic correlation functions remains 
difficult, even within the context of completely integrable quantum spin chains whose 
Hamiltonian can be diagonalised by a Bethe ansatz [3]. 

The situation is only worse for non-integrable chains, especially because the standard 
semiclassical theory of magnetism often fails in one dimension owing to strong quantum 
fluctuations. It is the purpose of this article to develop a reasonably complete theoretical 
framework for the class of (non-integrable) quantum spin-1 chains described by the 
Hamiltonian 

which encompasses a number of magnetic chains of current interest. Here n is a site 
index, A is the total number of sites on a periodic chain, and the Sn are spin operators at 
each lattice site such that S ;  = s(s + 1) = 2. The constant A in (1.1) will be assumed 

t Also at the Department of Physics, Washington University, St. Louis, MO 63130, USA. 
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positive, corresponding to planar anisotropy. One should also note that the trans- 
formation 

s:,+ -s i  s i  - -si  s:, + s:, 
at alternate sites preserves the spin commutation relations while it maps the Hamiltonian 
(1.1) onto 

which indicates that the spectrum of the original Hamiltonian is invariant under the 
transformation ( J ,  6) - (-J, - 6). Therefore no loss of generality results in assuming J 
to be positive in (1.1). Then the isotropic ferromagnet corresponds to A = 0 and 6 = 1 
and the isotropic antiferromagnet to A = 0 and 6 = -1. Nevertheless some caution is 
necessary in translating the above invariance of the spectrum into a corresponding 
statement for correlation functions. For instance, the two-point transverse correlation 
function calculated from the Hamiltonian (1.1) with J > 0 and 6 = - 1 applies to a chain 
with isotropic antiferromagnetic exchange interaction, but only after a shift of the 
Brillouin zone is performed according to k +  k + n; no such shift is necessary for the 
longitudinal correlation function. 

There exist at least two distinct coupling regimes controlled by the value of the 
dimensionless coupling constant a = A/J. Here we shall focus on systems realised in the 
strong-coupling region a > 1. The spectrum of the Hamiltonian (1.1) is expected to 
change drastically as a varies from very small to very large values. In the limit of infinite 
a ,  (1.1) reduces to a sum of single-site Hamiltonians the spectrum of which may be 
obtained trivially. The ground state is then the direct product of states with vanishing 
azimuthal spin, S i  = 0 for each site n ,  and has vanishing energy. Excited states can be 
constructed by assigning the value S i  = ? 1 to one or more sites. The excited states fall 
into bands of energy A ,  2A, . . . , corresponding to one, two or more sites with non- 
vanishing azimuthal spin of either sign. These bands are strongly degenerate in the limit 
of infinite a. For finite but sufficiently large a the exchange part in the Hamiltonian (1.1) 
may be treated as a perturbation which lifts the degeneracy and the bands acquire a finite 
width. We shall say that the system is realised in the strong-coupling region as long as 
the low-lying bands do not overlap. On the other hand, the bands are expected to overlap 
for sufficiently small a ,  a process that is eventually mediated by a phase transition at 
some critical value a = a,. The region of present interest is a > a,. 

The usual semiclassical theory of magnetism is clearly inapplicable to the strong- 
coupling region. We have thus developed a modified semiclassical theory based on a 
1/n expansion, which was specifically designed to account for magnetic systems with 
significant single-site or biquadratic interactions [4,5]. Furthermore, in a recent short 
communication [6], we have shown that a direct strong-coupling expansion provides a 
rather efficient approach, in some respects superior to the 1/n expansion. In particular, 
we have predicted the occurrence of certain exciton-antiexciton bound states which 
could be observed through the two-point longitudinal dynamic correlation function. 

Here we elaborate the calculation in [6] and provide explicit expressions for dynamic 
correlation functions. Hence in section 2 we summarise the results from the semiclassical 
1/n expansion in order to provide a basis for comparison with the more definitive results 
obtained through the strong-coupling expansion in section 3. In section 4 we derive 
explicit expressions for the two-point transverse and longitudinal dynamic correlation 
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functions within the strong-coupling expansion. We show that the transverse function is 
dominated by elementary excitations (excitons and antiexcitons) whereas the longi- 
tudinal function is dominated by exciton-antiexciton bound states. Our conclusions are 
summarised in section 5. 

The theoretical results presented in the paper are relevant for the analysis of quasi- 
one-dimensional spin-1 systems such as CsFeCl, and CsFeBr,, in so far as these systems 
are adequately described by the simple model Hamiltonian (1.1) with 6 = ? 1 and a = 
4-5 [7-91. However, the present authors do not have at this point explicit data for these 
systems; so the discussion of results from neutron scattering will be circumspect. 

2. Semiclassical theory 

This section surveys the essential results obtained within the 1/n expansion without 
giving calculational details [4]. We consider the two-point dynamic correlation functions 
at T = 0, namely the transverse function 

where the repeated index ,U is summed over x and y ,  and the longitudinal function 

A is the total number of sites and the summation over m and n extends over all sites. 
In the strong-coupling region the magnetisation (azimuthal spin) of the ground state 

vanishes ( M  = 0). Hence the transverse correlation function is dominated by elementary 
excitations with M = 1 or -1, which will be referred to as excitons or antiexcitons, 
respectively. An explicit calculation to leading order in the 1/n expansion yields 

G“(k ,  U )  = 2fk6(U - O k )  

C O ~  = A[1 - (4 COS k)/a]”* f k  = [ l  - (4 cos k)/a]-”2 (2.3) 

where a = A/], wk is the energy-momentum dispersion of a doubly degenerate 
(anti)exciton mode andfk determines the corresponding intensity; the factor of 2 in 2fk 
indicates that excitons and antiexcitons contribute with equal intensity. Finally we note 
that the Planck constant has been set equal to unity. 

For sufficiently large a the energy-momentum dispersion of equation (2.3) develops 
a mass gap 

A = A ( 1  - 4/a)l12 (2.4) 
which vanishes at a = 4 while it becomes imaginary for a < 4. Thus a phase transition is 
predicted at the critical coupling a = 4 below which the doubly degenerate (anti)exciton 
mode bifurcates into the usual magnon and a massive resonance describing in-plane 
fluctuations [4]. An immediate question is whether or not the critical coupling a = 4 is 
accurate. A related concern is the accuracy of the approximate result (2.3) for values of 
a in the vicinity of a = 4,  which are eventually the values of experimental interest. In 
fact, as is often the case with semiclassical theories, the leading 1/n approximation does 
not predict the correct critical coupling in this problem. Numerical simulations and other 
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evidence suggest that the true critical coupling lies in the region a, = 1. Therefore, for 
intermediate couplings in the region a = 4, detailed numerical predictions based on 
equation (2.3) should be interpreted with caution. 

Nevertheless the semiclassical approximation (2.3) yields a reasonable overall pic- 
ture and was recently used for the analysis of neutron scattering data [8]. Actually the 
data were analysed on the basis of a result due to Lindgard [lo], which is more general 
than (2.3) in that it accounts for finite temperature and a small interchain coupling. 
Although these effects are important for a detailed comparison with experiment, they 
will be neglected in the present work for simplicity. The essential physics is already 
present at T = 0, and in the absence of an interchain coupling. 

On the other hand, we have challenged the accuracy of the semiclassical approxi- 
mation through a direct strong-coupling expansion and found that (2.3) yields poor 
quantitative predictions for intermediate couplings of actual interest. Furthermore we 
have shown that the strong-coupling expansion yields valuable information on certain 
bound states that can be observed through the two-point longitudinal correlation 
function. A detailed discussion of these developments is given in sections 3 and 4. This 
section will be completed with the calculation of the longitudinal correlation function 
within the semiclassical approach based on the 1/n expansion. 

To leading order we find that the two-point longitudinal function is dominated by an 
exciton-antiexciton continuum, namely 

where wk is the excitonic dispersion of equation (2.3), a(. . . ) is the usual delta function 
and 

M(p,q)=hI[[i - (2/4(c0sp + COS~)]/{[I - (4co~p)/a][i -  COS^)/^]}^'^ - 11. (2.6) 

Although it is a relatively straightforward matter to perform the integration in (2.5) 
numerically, the essential features of this result become apparent in the strong-coupling 
region, a % 1, where 

wk -- A[l  - (2 COS k ) / ~ ]  

G"(k, w )  -- (1/2naA) tan2(k/2) [4cos2(k/2) - u2(1 - w / ~ A ) ~ ] ~ / ~ .  

M(p,  q )  = (l/a2)(cos p - cos q)2 (2.7) 

(2.8) 

and the integration in (2.5) can be done analytically: 

Viewing GZZ(k, 0) as a function of frequency w at fixed momentum k ,  equation (2.8) 
yields a non-vanishing result over a finite interval determined by the requirement that 
the argument under the square root be positive. The correlation function vanishes 
outside that interval. 

The longitudinal correlation function calculated above is a dull function of frequency, 
symmetric around w = 2A, and provides no indication for a sharp mode in this channel. 
In particular, this semiclassical result cannot account for a certain mirror mode picked 
up by out-of-plane fluctuations in the experiment in [8]. However, as we shall see in 
the following sections, a calculation within the strong-coupling expansion gives an 
expression for G"(k, w )  that contains a contribution from a sharp exciton-antiexciton 
bound state. 

Finally we note that both the transverse function in equation (2.3) and the longi- 
tudinal function in equation (2.8) are independent of the strength 6 of the Ising term in 
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the Hamiltonian (1.1). Such a result appears reasonable to leading order, because out- 
of-plane fluctuations are suppressed for large values of a ,  but some dependence on 6 
should be expected in higher-order corrections to (2.3) and (2.8). In fact the direct 
strong-coupling expansion will confirm the above picture to a large extent for the 
transverse correlation function, but not for the longitudinal function for which the Ising 
term will prove to be important even to leading order. 

3. Strong-coupling expansion 

In order to elucidate the issues raised in the preceding sections we have carried out a 
strong-coupling expansion for the low-lying spectrum of the Hamiltonian (1.1) and the 
corresponding dynamic correlation functions. In this section we present explicit results 
for the ground state, exciton and antiexciton states, as well as exciton-exciton, anti- 
exciton-antiexciton and exciton-antiexciton bound states. The calculation of dynamic 
correlation functions is relegated to section 4. 

To carry out the strong-coupling expansion the Hamiltonian (1.1) is written as 

H/A = H o  - (l /a)V 
A A 

v =  2 [i(Sn+S;+, + s;s,-l) + Ss3;+,] (3.1) 
n = l  

Ho = E 
n = l  

where H o  is treated as the zeroth-order Hamiltonian, whereas the term (-l /a)V is 
treated as a small perturbation within a systematic expansion in inverse powers of a. 

The spectrum of H o  is constructed trivially and has already been described in section 
1. Thus the zeroth-order ground state is given simply by IO) = IO, 0, . . . , 0), which is the 
state with all sites carrying vanishing azimuthal spin and has vanishing energy. This 
state is non-degenerate, so the calculation of higher-order corrections is relatively 
straightforward. Including the first-order correction the ground state is given by 

where Inl, ii2) denotes a state with sites n ,  and n2 carrying azimuthal spin equal to +1 
and - 1, respectively, while the azimuthal spin vanishes at all other sites. The calculation 
of the ground state was actually carried through to fourth order. We quote here the final 
result for the ground-state energy; 

&,/AA = c0 + E l / a  + .z2/a2 + ~ ~ / a ~  + ~ ~ / a ~  + . . 
€0 = 0 = €1 

(3.3) 
€ 2  = -1 €3 = 6/2 €4 = (2 - S2)/4. 

Note that the first few terms in (3.3) are 6 independent, in accord with our earlier remark 
that out-of-plane fluctuations tend to be suppressed in the limit of large a. 

Next we consider the manifold of states of the form 1 n) or 1 ii) where only the site n 
carries non-vanishing azimuthal spin equal to + 1 or - 1, respectively. There exist A 
states of type 1 n) ,  with n = 1,2 ,  . . . , A, which will be called excitons (e), and A states of 
type 16) which will be called antiexcitons ( E ) .  Both In) and ( i i )  are eigenstates of the 
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zeroth-order Hamiltonian with energy equal toA for any n. This degeneracy is removed 
by constructing states with definite crystal momentum: 

For any given value of crystal momentum k and magnetisation M = k l ,  the zeroth- 
order states (3.4) are non-degenerate and higher-order corrections are again obtained 
through non-degenerate perturbation theory. Hence, to leading order, the one-exciton 
state is given by 

n 

1 
IYk) = 1 k) + m z  exp(ikn) 2 cos k In + 1,6, n - 1) 

(m#n ,nz  1) 

and the one-antiexciton state by 

- -  
2 cos k In + 1, n, n - 1) 

+ c ( I m , m + l , 6 ) + + m , m + l , ~ ) )  + o  - 
m 1 (a’’) 

(3.5b) 
( m # n , n * l )  

where we use a straightforward generalisation of notation introduced earlier. The 
calculation was actually carried through to third order. We quote here an explicit third- 
order expression for the excitation energy of exciton or antiexciton states, namely 

O k  = A(l  + w l / a  + 0 2 / a 2  + w3/a3  + . . .) 
01 = -2 COS k o2 = 1 + 2 sin’ k (3.6) 
o3 = i(1 + 8 sin2 k) cos k - 26 sin2 k. 

Note again that the first few terms in (3.6) are 6 independent. 
We are now in a position to make a first comparison with the semiclassical results in 

section 2. In figure 1 we compare the strong-coupling approximation (3.6) with the 
semiclassical approximation (2.3) for a typical large coupling a = 10. The dispersion is 
depicted for both ferromagnetic (6 = 1) and antiferromagnetic (6 = -1) exchange 
interaction, having incorporated the shift k +  k + n in the latter case. The observed 
discrepancy between the two curves arises because the semiclassical result (2.3) is only 
the leading approximation within the l /n expansion, whereas the strong-coupling series 
(3.6) was carried to third order and yields a rapidly converging sequence for a = 10. 
Therefore it is almost certain that (3.6) gives an excellent approximation in this region 
of couplings while a comparable accuracy would be achieved within the semiclassical 
theory by calculating higher-order 1/n corrections. 

To simplify the picture we consider the mass gap calculated from the strong-coupling 
series (3.6): 

A = mkz0  = A ( l  - 2 /a  + l / a2  + l/2a3 + . . .) (3 * 7) 
and compare it with the leading-order semiclassical result in equation (2.4). It is clear 
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aSL I 
-n 0 k n 

1 

s -  a 

0 4 a 0  ! 

Figure 1. Energy-momentum dispersion of the Figure 2. Mass gap as a function of a;  curve I 
(anti)exciton mode for a typical strong anisotropy depicts the leadingorder semiclassical approxi- 
(a = 10). The dispersion is plotted for both ferro- mation (2.4), curve I1 includes the first (anhar- 
magnetic (FM) and antiferromagnetic (AFM) monic) 1/n correction to (2.4), and curve I11 is the 
exchange interaction. The full curves depict the strong-coupling approximation of (3.7). 
result of thestrong-couplingexpansion, (3.6), and 
the broken curves correspond to the semiclassical 
result (2.3). 

that, for very large values of a ,  equations (2 .4 )  and (3.7) can both be approximated by 
A == A ( l  - 2 / a )  and thus coincide. Significant deviations begin to emerge at, say, a = 
10, as is apparent in figure 2 which depicts the mass gap as a function of a .  As expected, 
the discrepancy is reduced by including the first (anharmonic) 1/n correction to equation 
(2 .4 ) ,  which was calculated in [4] and is also shown in figure 2 .  

Nonetheless the picture becomes more subtle for the intermediate couplings of actual 
interest. For a = 4, the last term in equation (3.7) contributes only a few per cent of the 
total value, which makes it reasonable to assume that the strong-coupling series remains 
reliable in this region of couplings yielding an estimate of A = 0.57A for the mass gap at 
a, = 4 .  On the other hand, the leading-order semiclassical result (2 .4 )  yields a vanishing 
mass gap at a = 4, while the first anharmonic correction shown in figure 2 becomes 
divergent. This singular behaviour reflects the fact that the semiclassical critical coupling 
a = 4 is inaccurate. Hence the semiclassical theory cannot be useful in the region a --. 4 ,  
unless tedious resummation techniques are invoked. 

Therefore the strong-coupling series (3.6) yields a more reliable description of the 
(anti)exciton mode for strong as well as intermediate couplings. Furthermore pushing 
the calculation to high orders would help to locate the true critical coupling and to 
elucidate the nature of the phase transition. The first few terms in equation (3.7) already 
suggest that the critical coupling should lie in the region a == 1. The high-order behaviour 
of this series is expected to be especially interesting in view of the anticipated Haldane 
gap at a = 0 and 6 = - 1 and the absence of a gap at a = 0 and 6 = 1. Note that the first 
few terms displayed in equation (3.7) are 6 independent, but this situation is expected 
to change in higher-order terms. 

The practical outcome of the preceding discussion is that neutron scattering data 
should be reanalysed in the light of equation (3.6). Here we consider briefly the 
(anti)exciton dispersion of CsFeBr3 for which [8] assigns the parameters 6 = -1, A = 
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29.8 K , J  = 6.4 K (a  = A/J = 4.7), which have been adapted to ourcurrent conventions. 
These parameters were extracted essentially from a fit of the data against the semi- 
classical dispersion of equation (2.3). We thus use equation (2.3) with the above par- 
ameters as input ‘experimental’ data and perform a least-squares fit to the dispersion 
(3.6). Assuming that 6 = -1, the resulting new parameterSA = 23 K, J = 7 K (a  = A/ 
J = 3.3) are found in substantial disagreement with the original assignment. The most 
notable feature of the new parameters is that the value of a is pushed below the 
semiclassical critical coupling a, = 4, where equation (2.3) is no longer valid. Needless 
to say, a more careful analysis should use equation (3.6) in conjunction with actual data 
and include the effect of a small interchain coupling. Finally the energy-momentum 
dispersion (3.6) must be completed with an explicit expression for the intensity of the 
excitonic mode, which will be given in section 4 of the present paper. 

Having thus completed the description of excitons and antiexcitons, we turn our 
attention to two-body states, namely exciton-exciton (ee) pairs with magnetisation M = 
2, antiexciton-antiexciton (Ea) pairs with M = -2, and exciton-antiexciton (eE) pairs 
with M = 0. The ee and E E  states share with more conventional two-magnon states the 
property that they may be observed only through four-point correlations. In contrast, 
eE states contribute directly to the two-point longitudinal dynamic correlation function, 
because they carry the same magnetisation as the ground state ( M  = 0), and should be 
accessible to inelastic neutron scattering. It is thus important to examine whether bound 
states can be formed, which could then be observed by neutron scattering through out- 
of-plane fluctuations. 

The leading-order semiclassical calculation in section 2 failed to provide evidence 
for the formation of bound states, for more or less the same reason that the familiar 
Holstein-Primakoff theory does not yield direct information for the two-magnon bound 
states known to occur in ferromagnets. Therefore, to ascertain the existence of bound 
states in the present problem, we resort again to the strong-coupling expansion. 

We analyse first the ee sector. In the limit a + CO, this sector consists of states of the 
form Inl, n2) where the azimuthal spin is equal to +l  at sites n1 and n2 and vanishes at 
all other sites. Since n,  # n2 and In1, n2) = In2, nl), there exist A(A - 1)/2 ee states all 
with energy 2A. Such a strong degeneracy cannot be completely removed by sorting out 
states with definite crystal momentum. Hence we must perform degenerate perturbation 
theory; to leading order, we must diagonalise the matrix (n;  , n; 1 V ( n l ,  n2)  where Vis 
the exchange operator defined in equation (3.1). The action of Von In1, n2) is given by 
VIn1,n2)=In1 -1,n2)+ln1 + l , n Z ) + I n l , n * - l ) + l n l , n 2 + 1 )  ( 3 . 8 ~ )  
when n1 and n2 are not neighbours, and 

(3.8b) 
In the right-hand sides of equations ( 3 . 8 ~ )  and (3.8b) we have omitted states that contain 
more or less than two sites with non-vanishing azimuthal spin, as is appropriate to leading 
order. 

The main point of this calculation is that the operator V defined by equation (3.8) 
can be diagonalised by an elementary Bethe ansatz, in close analogy with calculations 
of two-magnon states in anisotropic chains of arbitrary spin [ll, 121. Thus we consider 
the eigenvalue problem 

Vln,  n + 1) = 61n, n + 1) + In - 1, n + I) + In, n + 2). 

In view of equation (3.8) the coefficients C,,,,, satisfy the system of linear equations 
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(3.10) 

(3.11) 
C n , , n ,  =exp[i(klnl +k2n2+~, /2)1+ex~[ i (k ,n ,  +k2nl - Q , / ~ ) I  

E =  COS k1 +COS k2) 

provided that the wavenumbers k,, k2 and the phase shift Q, are related by 

cot(cp/2) = {S sin[(kl - k2)/2]}/{2 cos[(k, + k,)/2] - 6 cos[(kl - k,)/2]}. (3.12) 

The wavenumbers and the phase shift are further constrained by the periodic boundary 
condition 

c n l , n z  = Cn2,n l+A (3.13) 

which leads to the relations 

Akl - = 2 ~ A l  Ak2 + Q, = 2nA2 (3.14) 

where A and A, are integers such that 

0 6 A1 S A 2  S A  - 1. (3.15) 

Finally the leading approximation to the excitation energy of an ee pair is given by 
Qklk2=A(2-  &/a) ,  or 

Qklk2= 2A[1 - (l/a)(cos kl  + COS k2)]. (3.16) 

We have thus summarised all information necessary for a complete analysis of the 
ee sector along the lines of [ l l ,  121. For any set of integerSA, and A 2  in the range (3.15), 
equations (3.11), (3.12) and (3.14) provide a solution of the eigenvalue problem (3.9). 
There exist essentially two categories of solutions corresponding to A ,  < A 2  - 1, and 
A, = A, or A ,  = A, - 1. The majority of solutions belong in the first category and yield 
real wavenumbers k l  and k2. The excitation energies of these solutions fall into a two- 
body continuum given by the eigenvalues (3.16) parametrised in terms of the total crystal 
momentum k = kl + k2 (mod 2n). After a proper folding of the wavevector k = kl  + k2 
to the first Brillouin zone, the continuum extends between the two boundaries 

(3.17) 

The second category of solutions, with A ,  = A, or A ,  = Az - 1, may lead to complex 
wavenumbers of the form k l  = U + iu and k2 = U - iu. Equation (3.14) then yields Q, = 
iAu for A = A, or Q, = iAu + K for A , = A, - 1. Substituting these relations in equation 
(3.12) and taking the thermodynamic limit (A+ CO) we find that 

2 cos U = 6 exp(-u) (3.18) 

where u is assumedpositive, negative U leading to identical results. The excitation energy 
calculated by inserting (3.18) into (3.16) is denoted by QF: 

Qy = 2A{1 - (l/a)[S/2 + (2/6) cos2(k/2)]}. (3.19) 

A further consequence of equation (3.18) is that complex solutions exist only when 

Qt = 2A[1 t (2/a) cos(k/2)]. 

U = ( k ,  + k2)/2 = k/2 U = ( k ,  - k2)/2i 
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0 s cos(k/2) G 6/2 for 6 > 0, or 0 3 cos(k/2) 3 6/2 for 6 < 0. The usual folding of the 
zone leads to the single condition 

ko s Ikl 6 7r ko = 2cos-1(/61/2) (3.20) 

where k is the crystal momentum appearing in equation (3.19) and is defined in the first 
Brillouin zone. 

A solution with complex wavenumbers describes a bound state of two excitons, with 
energy-momentum dispersion given by equation (3.19). The dispersion lies below the 
continuum for 6 > 0 and above the continuum for 6 < 0. In both cases the dispersion 
merges with the continuum at the cut-off momentum Ikl = ko = 2 cos-'(/6//2) below 
which the bound state is unstable. Note that the bound state is stable throughout the 
zone for 16 I > 2, whereas no such state is possible in the XY limit 6 = 0. 

The description of the E E  sector is completely analogous and leads to a bound state 
with the same dispersion as in equation (3.19). We thus turn our attention to the exciton- 
antiexciton (eE) sector which is crucial for the calculation of the longitudinal dynamic 
correlation function. In the strong-coupling limit, a + CO, the eE sector is spanned by 
states of the form Inl, E2> where the bar indicates that the azimuthal spin at site n2 is 
equal to -1. The study of this sector appears to be complicated by the fact that Inl, Z2) 
is not symmetric under exchange of n1 and n2. Nevertheless it is not difficult to see that 
the (anti)symmetric combinations 

ln1, n2)* = (Wml,  Z2> 2 In27 &>I (3.21) 

both satisfy equation (3.8) with the simple substitution 6+ - 6. Therefore the cor- 
responding eigenvalue problem is solved by wavefunctions of the form 

(3.22) 

where the coefficients are again given by equation (3.11), except that the wavenumbers 
and the phase shift are now related by 

cot(q/2) = ( -6  sin[(k, - k2)/2]}/{2 cos[(kl + k2)/2] + 6 cos[(k, - k2)/2]} (3.23) 

which differs from equation (3.12) in the sign of 6. A difference arises also in the periodic 
boundary condition which should read 

c n , , n ,  = C n Z , n l + A  Or cn,,n2 = - C n 2 , n l + A  (3.24) 

for the symmetric or antisymmetric combinations in equation (3.22), respectively. 
Expressing these conditions in terms of the wavenumbers and the phase shift leads to 
equation (3.14) in both cases, but the A I  and A 2  are integers in the first case and half- 
integers in the second. Nonetheless, in the thermodynamic limit, the dispersions for the 
eE bound state are found to be the same for both cases in (3.24), namely 

S2p = 2A{1 + (l/a)[6/2 + (2/6) cos2(k/2)]} (3.25) 

whichdiffersfromequation (3.19) onlyinthesignof 6. On theother hand, theboundaries 
of the eE continuum are the same with those of the ee or E E  continuum given in equation 
(3.17). Hence the eE dispersion (3.25) emerges above the continuum for 6 > 0 and below 
the continuum for 6 < 0; no bound state occurs in the X Y  limit 6 = 0. 
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Figure 3. Excitation spectrum of exciton-anti- 
exciton (ee) states for a typical strong coupling 
(a  = 10). The bound state emerges below the con- 
tinuum for the antiferromagnet (full curve, S = 

15. I - 1) and above the continuum for the ferromagnet 
r -n 0 k (brokencurve, 6 = 1). 

The above result is illustrated in figure 3 for a typical strong coupling a = 10 and 
ferromagnetic (6 = 1) as well as antiferromagnetic (6 = -1) exchange interaction. 
The physical characteristics of the eE bound state will become apparent through its 
contribution to Gz2(k, w )  which is calculated explicitly in the following section. 

4. Dynamic correlation functions 

The results of the previous section are best summarised with an explicit calculation of 
the two-point dynamic correlation functions at T = 0. We begin with the transverse 
function defined in equation (2.1). After taking the usual steps of inserting a complete 
set of states, and making the time dependence explicit using the evolution operator 
exp(-iHt), we obtain 

1 
~ t r ( k ,  w )  = -E exp[ik(m - n>l E ( ~ / ~ ~ l y ) ( y l ~ g l ~ ~ ( w  - 0,) (4.1) 

A mn Y 

where y is summed over x and y ,  152) is the ground state, and the sum over y extends 
over a complete set of eigenstates 1 y )  with eigenvalues wy.  Since the magnetisation of 
the ground state vanishes ( M  = 0), it is clear that only states with M = -+ 1 contribute to 
this sum. The dominant contribution arises from single exciton or antiexciton states. 
There are also contributions from higher bands with M = k1, such as eeE or eEE, but a 
discussion of these effects is deferred for the moment. 

Thus we proceed to calculate the contribution of excitons and antiexcitons to the 
sum of equation (4.1). The relevant non-vanishing amplitudes are 

where I S2) is the ground state (3.2j, while lqk) and I $,) are the exciton and antiexciton 
eigenstates of equation (3 S). A second-order calculation yields 
(ais, / v k )  = (&21s,'I$k> = (2/A)'I2 exp(ikn)[l + (l/a) cos k + (1/4a2) 

which is then used in equation (4.1) to obtain 

f k  = 1 + (2/a) cos k + (1/2a2)(12 cos' k - 26 cos k - 7) + o(1 /a3 )  
where cc)k is the (anti)exciton dispersion given earlier in equation (3.6). The amplitude 
f k  may be used to calculate the intensity of exciton and antiexciton modes. 

(~1s; / vk )  and (QIX lGk) 

x (10 cos2 k - 26 cos k - 7) + O(l/a3)] (4.2) 

(4.3) 
G"(k, U )  = 2fk6(0 - wk)  
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Comparing the above result with its semiclassical analogue in equation (2.3) we see 
that agreement obtains for very large values of a for which wk = A[1 - (2 cos k) /a ]  and 
fk = 1 + (2  cos k ) / a  in both cases. For intermediate values of a, (4.3) is superior to (2.3) 
for reasons already explained in section 3. Nevertheless one should keep in mind that 
equation (4.3) is approximate in two ways. First, it is based on a strong-coupling 
expansion which could, in principle, be improved further by calculating higher-order 
corrections. Second, we have neglected in equation (4.1) contributions from higher M = 
&1 bands such as eeE, eEE and so on. Yet, for sufficiently strong anisotropy, these bands 
are widely separated from the fundamental e or C band and can be safely ignored. As a 
consequence, the (anti)exciton mode appears as a sharp &function peak in the transverse 
correlation function. This situation has been confirmed in CsFeCl, and CsFeBr, where 
the observed modes are sharp to within experimental resolution [7-91. Of course, the 
various bands will begin to overlap for sufficiently small a, in the region a = 1, and the 
(anti)exciton mode will acquire a finite width. For even smaller values of a, a description 
in terms of (anti)excitons is no longer valid and the system undergoes a phase transition. 

Our discussion of the transverse correlation function is completed here with a 
reminder concerning the choice of the parameter 6. As long as the exchange constant J 
is kept positive in equation (1. l), equations (3.6) and (4.3) apply to a chain with isotropic 
ferromagnetic exchange interaction simply by setting 6 = 1. The corresponding results 
for a chain with isotropic antiferromagnetic exchange interaction were obtained by 
setting 6 = -1 in equations (3.6) and (4.3) and by shifting the Brillouin zone according 
to k + k + n. This procedure was already followed in figure 1. To be sure, the dispersion 
m k  and the amplitude fk are then given by 

mk = A(1 + (2/a) cos k + (l/a2)(1 + 2 sin2 k )  

+ (l/a3)[2 sin' k - i(1 + 8 sin2 k )  cos k]  + O(l/a4)} (4 * 4) 
fk = 1 - (2/a) cos k + (1/2a2)(12 cos' k - 2 COS k - 7) + o(l/a3) 

and are relevant for the analysis of CsFeBr, as long as the interchain coupling can be 
neglected [8]. 

The two-point longitudinal function may be written in a form analogous to equation 
(4.1): 

1 
G Z Z ( k , w )  = -C,exp[ik(m-n)]C,(s2;1IS~Ir)(rlS.,is2>6(w-o,> (4.5) 

A mn Y 

where the sum over y extends over all eigenstates with magnetisation M = 0. The first 
non-vanishing contribution to this sum emerges from the e5 eigenstates constructed in 
section 3. There are also contributions from higher M = 0 bands, such as eeEE, but those 
may be neglected in the strong-coupling limit for reasons explained earlier in this section. 

Hence our immediate task is to calculate matrix elements of the form 

(Q Is; I w)' (4.6) 
where 1 Q)is the ground state of equation (3.2) and I q)' are the eE eigenstatesof equation 
(3.22). To leading order, we find that 

- - 
s:, IQ) = (1/2a)[(ln, n + 1) - In, n + 1)) - (In - 1, n) - 111 - 1, n))] 

= (l /aVT)(In,  n + 1)- - In - 1, n)- ) .  (4.7) 
In the second step of equation (4.7) we have invoked the abbreviated notation of 
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equation (3.21). Also using the general form of the eE eigenstate given in equation (3.22) 
we find that 

where N is the norm of the eE eigenstate, which was omitted in the discussion in section 
3. 

The leading-order contribution to equation (4.5) is now calculated by restricting the 
sum to states of the form I y )  = I V)- and by using equation (4.8) to furnish the necessary 
matrix elements. The sum over y is then replaced by 

1 1 
- 2 7 (Cm,m+l - Cm-l,m)(Cn*,n+l - c , * - , , n ) 6 ( ~  - Q ~ ~ )  
2a2 1,A2 N (4 * 9) 

where the coefficients C,,,,, are given by the Bethe ansatz (3.11), with wavenumbers 
k l ,  k2  and phase shift Q, related by equation (3.23), N i s  the norm of the eE eigenstate 
and QeE are the eE eigenvalues. One should take into account that all of these quantities 
are eventually functions of the wavenumbers ill and ,I2 introduced in equation (3.14), 
which take half-integer values, in the interval 0 < A l  < A 2  S A - 1, because the only eE 
states that contribute to (4.9) are those with negative exchange parity. Finally the sum 
in equation (4.9) should distinguish between scattering and bound ee eigenstates, in 
accord with our analysis in section 3. 

Thus we have sketched the calculation of the longitudinal function to leading order 
in the strong-coupling expansion. The actual calculation is somewhat lengthy; so we 
quote only the final result: 

G Z Z ( ~ ,  U )  = c , ( q e ( I k l -  k 0 ) 6 ( w  - QF) + c2(k, U). (4. loa) 

The contribution of the bound state is represented by the first term in the right-hand 
side of equation (4.10a), where 6(w - QF) is the usual delta function, Q;;“ being the 
energy of the e5 bound state; 

(4. lob) 

and 6((kl  - k o )  is a step function, such that 6(x > 0) = 1 and 6(x < 0) = 0, where ko is 
the cut-off crystal momentum at which the bound state merges with the continuum: 

Qr = 2A{1 + (l/a)[6/2 + (2/6) cos2(k/2)]} 

ko = 2cos-’(161/2). (4.10c) 

The amplitude C1 is given by 

C , ( k )  = {[2 ~ i n ~ ( k / 2 ) ] / ~ * 6 ~ } [ 6 ~  - 4 cos2(k/2)] (4.10d) 

and is the weight of the bound state. Note that C1 is positive for lkl > ko and vanishes at 
the cut-off momentum ko. Finally the contribution of the eE continuum is represented 
by the last term in (4.10a), namely 

C , ( k ,  0) = (1/2~aA){sin2(k/2)/[cos2(k/2) + a(6/2)(1 - w/2A) + (S/2)2]} 

X [4 c0s2(k/2) - a2(1 - u / ~ A ) ~ ] ” ~  

and takes non-vanishing values over the finite frequency interval 

Qi S w < Ql Qi = 2A[1 ? (2/a) cos(k/2)] 

where Q z  are the boundaries of the continuum. 
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Figure4. The two-point longitudinal dynamic cor- 
relation function, as a function of frequency for 
three typical momenta. The full curve is the 
strong-coupling approximation (4.10) while the 
broken curve is the semiclassical approximation 
(2.8). A 6-function peak appearing in (c) is sket- 
ched by a vertical full line without attempting to 
display its actual weight. The correlation function 
is measured in units of 1/A and we have used a 
typical strong coupling (a = 10) and anti- 
ferromagnetic exchange interaction (6 = -1). 

The above result is illustrated in figure 4 for a typical strong coupling (a  = 10) and 
antiferromagnetic exchange interaction (6 = -1). The cut-off momentum is then given 
by ko = 2n/3. We thus plot G"(k, U )  as a function of frequency LL) for three typical 
values of crystal momentum k: in figure 4(a) fork = n/2 < ko,  for which no bound state 
is possible, and so the correlation function (4.10) does not contain a &function but 
exhibits a broader peak at 

(4.11) 

foreshadowing the appearance of a bound state for momenta near the zone boundary; 
in figure 4(b) for k = 2n/3 = ko, for which the peak of the correlation function develops 
into a square-root singularity at the lower edge of the continuum; in figure 4(c) for k = 
5 n / 6  > ko,  for which a &function peak does indeed emerge below the continuum. 

Figure 4 also contains a comparison of equations (4.10) with the semiclassical ana- 
logue in equation (2.8). The latter exhibits a broad peak at around U = 2A for all values 
of crystal momentum. The main difference is, of course, the absence of a bound state in 
the semiclassical result. A closer comparison reveals that equation (2.8) is the 6 = 0 
limit of equations (4.10). In other words, agreement obtains only in theXYlimit. Putting 
it differently, the leading-order semiclassical result unduly suppresses out-of-plane 
fluctuations, thus missing important information about the eE bound state. Nevertheless 

U = ,pX = 2A[1 + (26/a){cos2(k/2)/[cos2(k/2) + (S/2)2]}] 
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we shall see shortly that the total intensity computed from equations (4.10) is 6 inde- 
pendent and thus coincides with the intensity computed from equation (2.8). 

In order to compute the total intensity, and also to appreciate the relative weight of 
the eE bound state, we integrate both sides of equation (4. loa) over all frequencies: 

lom dw G"(k, w )  = W , ( k )  + W 2 ( k )  

where W,(k) ,  the weight of the bound state, is 

~ , ( k )  = {[2 sin2(k/2)]/a2d2)[d2 - 4 cos2(k/2)] 
Wl(k) = (o 

and W2(k) ,  the weight of the continuum, is 

(2 sin2 k ) / a 2 S 2  

[2 sin2(k/2)]/a2 
W 2 ( k )  = dw C2(k,w) = [ 

The total weight is then given by 

2 sin2(/@) 
a2 

loffi dco G"(k, w )  = 

(4.12) 

for Ikl> ko 

for Ikl<ko 
(4.13) 

for (k l>  ko 

for lkl < k o .  
(4.14) 

(4.15) 

for all values of k ,  above or below the cut-off momentum ko. Thus we see that the total 
weight vanishes at the zone centre and attains its maximum value at the zone boundary. 
For Ikl< ko the total weight is absorbed by the continuum while for lkl > ko it is dis- 
tributed between the bound state and the continuum according to equations (4.13) and 
(4.14). The bound state achieves maximum intensity at the zone boundary where it 
absorbs the total weight. 

Equation (4.15) may also be viewed as a sum rule connecting the dynamic to the 
static correlation function, namely 

1 
A mn 

loffi dw G"(k, w )  = -E exp[ik(m - n)]  (Q/S;S;/Q). (4.16) 

The latter can be computed more directly by using in the right-hand side of equation 
(4.16) the leading-order strong-coupling approximation to the ground state given earlier 
in equation (3.2). A short calculation reproduces the result in equation (4.15), thus 
providing an important check of consistency. One should finally note that the semi- 
classical result (2.8) also satisfies the sum rule (4.15). 

The picture of the longitudinal correlation function described above suggests that 
the eE bound state should be observable in neutron scattering through out-of-plane 
fluctuations. In particular, the bound state should be conspicuous for crystal momenta 
near the zone boundary where it achieves maximum intensity. For Ikl < ko a &function 
peak ceases to exist, but figure 4 indicates that a relatively sharp peak of lower intensity 
continues to appear at frequency Qrax given by equation (4.11). Hence in figure 5 we 
plot the bound-state dispersion using Qp of equation (4.10b) for Ikl > ko (full curve) 
and Qr of equation (4.11) for Ikl < ko (broken curve). Note that the two curves join 
smoothly at Ikl = ko. For comparison, the (anti)exciton mode is also displayed in figure 
5.  We thus see that the dispersion of theeE bound state exhibits the general characteristics 
of the dispersion of the mirror mode observed in the experiment in [8], except for some 
apparent quantitative differences near the zone centre. These differences are probably 
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Figure 5.  Comparison of the energy-momentum 
dispersionofthe (anti)excitonmode(curveI) with 
that of the eE bound state (curve 11) for a typical 
intermediate coupling (a  = 4) and anti- 
ferromagnetic exchange interaction (6 = - 1). 
that of the eE bound state (curve 11) for a typical 
explained in the text. 
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not crucial in view of the fact that the intensity of out-of-plane fluctuations is vanishingly 
small near the zone centre. Of course, it is still possible that the observed mirror mode 
is due to couplings that go beyond the simple Hamiltonian (1.1). Nonetheless, to the 
extent that this simple model is relevant for CsFeBr,, our calculation strongly suggests 
that an eE bound state is present in out-of-plane fluctuations and must be resolved before 
other explanations of the mirror mode are contemplated. 

We conclude this section with a word of caution concerning a consistent use of the 
derived approximate expressions for the dynamic correlation functions. For inter- 
mediate anisotropies of actual interest, the transverse function (4.3) is much more 
accurate than the longitudinal function (4.10), because the latter was computed only to 
leading order in the strong-coupling expansion. Therefore, if the parameters of the 
model are extracted from equation (4.3), it would be inconsistent to use them directly 
for the analysis of out-of-plane fluctuations through equations (4.10). An example is 
given in figure 5 which compares the dispersion of the (anti)exciton mode with that of 
the eE bound state, for a typical intermediate coupling (a  = 4) and isotropic anti- 
ferromagneticexchange interaction (6 = - 1). The (anti)exciton dispersionis then given 
by equation (4.4) which is an accurate expression for both strong and intermediate 
couplings, as discussed in section 3. However, in figure 5 ,  we actually use equation 
(4.4) only to leading order, i.e. w k  = A[l  + (2 cos k ) / a ] ,  to be consistent with the 
corresponding leading-order calculation of the dispersion of the eE bound state given 
in equations (4.10). Therefore, for a consistent analysis of out-of-plane fluctuations, 
equations (4.10) should be used in conjunction with parameters extracted from the 
transverse function (4.3) truncated to leading order. Of course, a more satisfactory 
procedure would be to calculate higher-order corrections to equations (4.10); but these 
appear difficult to obtain because of the inherent degenerate perturbation theory. 

5. Concluding remarks 

We have developed a reasonably complete theoretical framework for quantum spin-1 
chains with strong planar anisotropy, using both semiclassical and strong-coupling 
methods. We have shown that more reliable results are obtained with a direct strong- 
coupling expansion. These results are summarised by the explicit expressions for the 
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dynamic correlation functions given in equations (4.3) and (4.10), which should prove 
useful for a detailed analysis of neutron scattering experiments. 

Although the strong-coupling expansion was shown to be superior to the 1/n expan- 
sion in the present problem, one should not hasten to generalise such a conclusion. In 
fact the 1/n expansion is a more flexible framework and can prove useful in a variety of 
problems for which the standard semiclassical theory of magnetism fails. For instance, 
the 1/n expansion yields useful information for the weak-coupling region of the present 
model [4], for quantum spin-1 systems with competing quadratic and biquadratic inter- 
actions [5], for the currently popular t-J model [13], and so on. 
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Note. One of the referees made the observation that, if one uses for the exciton dispersion 
the simple functional form (2.3) with renormalised parameters, namely 

m k  = A'[I - (4 COS k) /a ' ] ' /2  (1) 
withA' = A ( l  + 3/aZ)anda' = a(1 + 3/a2),theresultsofthestrong-couplingexpansion 
(3.6) are reproduced to second order. Although the &term in the third-order correction 
to the dispersion (3.6) and in the second-order correction to the intensity (4.3) cannot 
be accounted for by a similar renormalisation, this observation is of some importance 
because experiments on CsFeBr3 have thus far been analysed essentially on the basis of 
(1). Using as input the experimental value a' = 4.7 one finds that a = 3.9, which is 
significantly larger than the value a = 3.3 obtained in the text. The difference is due 
partly to the limited expansion and partly to the additional &term in (3.6). However, it 
is an indication that the third-order correction in (3.6), which captures some of the 
subtleties of out-of-plane fluctuations, is significant in this region of intermediate coup- 
lings. Needless to say, out-of-plane fluctuations become crucial in the calculation of both 
exciton bound states and the longitudinal correlation function (4.10) which are the main 
new results of the present work that were not anticipated by earlier treatments [lo]. 
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